Oxygen Evolution at Manganite Perovskite Ruddlesden-Popper Type Particles: Trends of Activity on Structure, Valence and Covalence

نویسندگان

  • Majid Ebrahimizadeh Abrishami
  • Marcel Risch
  • Julius Scholz
  • Vladimir Roddatis
  • Norbert Osterthun
  • Christian Jooss
چکیده

An improved understanding of the correlation between the electronic properties of Mn-O bonds, activity and stability of electro-catalysts for the oxygen evolution reaction (OER) is of great importance for an improved catalyst design. Here, an in-depth study of the relation between lattice structure, electronic properties and catalyst performance of the perovskite Ca1-xPrxMnO₃ and the first-order RP-system Ca2-xPrxMnO₄ at doping levels of x = 0, 0.25 and 0.5 is presented. Lattice structure is determined by X-ray powder diffraction and Rietveld refinement. X-ray absorption spectroscopy of Mn-L and O-K edges gives access to Mn valence and covalency of the Mn-O bond. Oxygen evolution activity and stability is measured by rotating ring disc electrode studies. We demonstrate that the highest activity and stability coincidences for systems with a Mn-valence state of +3.7, though also requiring that the covalency of the Mn-O bond has a relative minimum. This observation points to an oxygen evolution mechanism with high redox activity of Mn. Covalency should be large enough for facile electron transfer from adsorbed oxygen species to the MnO₆ network; however, it should not be hampered by oxidation of the lattice oxygen, which might cause a crossover to material degradation. Since valence and covalency changes are not entirely independent, the introduction of the energy position of the eg↑ pre-edge peak in the O-K spectra as a new descriptor for oxygen evolution is suggested, leading to a volcano-like representation of the OER activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and photocatalytic activity of K2CaNaNb3O10, a new Ruddlesden-Popper phase layered perovskite.

A new three-layer perovskite oxide with the Ruddlesden-Popper (R-P) phase, K2CaNaNb3O10, and its protonated form were synthesised and their photocatalytic performance was compared to that of KCa2Nb3O10 or the protonated form with the Dion-Jacobson (D-J) structure in terms of H2 and O2 evolution. K2CaNaNb3O10 exhibited a higher activity for O2 evolution than KCa2Nb3O10 when IO3- was used as an e...

متن کامل

Artificial Construction of the Layered Ruddlesden–Popper Manganite La2Sr2Mn3O10 by Reflection High Energy Electron Diffraction Monitored Pulsed Laser Deposition

Pulsed laser deposition has been used to artificially construct the n = 3 Ruddlesden-Popper structure La(2)Sr(2)Mn(3)O(10) in epitaxial thin film form by sequentially layering La(1-x)Sr(x)MnO(3) and SrO unit cells aided by in situ reflection high energy electron diffraction monitoring. The interval deposition technique was used to promote two-dimensional SrO growth. X-ray diffraction and cross-...

متن کامل

Impact of octahedral rotations on Ruddlesden–Popper phases of antiferrodistortive perovskites

This work presents the most detailed and extensive theoretical study to date of the structural configurations of Ruddlesden–Popper (RP) phases in antiferrodistortive (AFD) perovskites and formulates a program of study which can be pursued for RP phases of any AFD perovskite system. We systematically investigate the effects of oxygen octahedral rotations on the energies of RP phases in AFD perov...

متن کامل

Site and oxidation-state specificity yielding dimensional control in perovskite ruthenates.

Sr(3)CaRu(2)O(9), a new 2:1 B-site ordered perovskite ruthenate, was synthesized and its structure determined based on powder X-ray, neutron and electron diffraction data. It is composed of one layer of CaO(6) alternating with two layers of RuO(6) perpendicular to the [111] axis of the cubic perovskite structure. The ordering leads to a [-Ru-Ru-Ca-] repeat unit along each of the pseudocubic dir...

متن کامل

Stability, cation ordering and oxygen non-stoichiometry of some perovskites and related layered oxides

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Matti Lehtimäki Name of the doctoral dissertation Stability, cation ordering and oxygen non-stoichiometry of some perovskites and related layered oxides Publisher School of Chemical Technology Unit Department of Chemistry Series Aalto University publication series DOCTORAL DISSERTATIONS 118/2013 Field of research Inorganic Che...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016